Pandas for Everyone: Python Data Analysis (Addison-Wesley Data & Analytics Series) by Daniel Y. Chen, PDF 0134546938

Pandas for Everyone: Python Data Analysis (Addison-Wesley Data & Analytics Series)

  • Title: Pandas for Everyone: Python Data Analysis (Addison-Wesley Data & Analytics Series)
  • Autor: Daniel Y. Chen
  • Publisher (Publication Date): Addison-Wesley Professional; 1 edition (January 5, 2018)
  • Language: English
  • ISBN-10: | 0134546938
  • ISBN-13: | 978-0134546933
  • File Format: EPUB, PDF


The Hands-On, Example-Rich Introduction to Pandas Data Analysis in Python


Today, analysts must manage data characterized by extraordinary variety, velocity, and volume. Using the open source Pandas library, you can use Python to rapidly automate and perform virtually any data analysis task, no matter how large or complex. Pandas can help you ensure the veracity of your data, visualize it for effective decision-making, and reliably reproduce analyses across multiple datasets.


Pandas for Everyone brings together practical knowledge and insight for solving real problems with Pandas, even if you’re new to Python data analysis. Daniel Y. Chen introduces key concepts through simple but practical examples, incrementally building on them to solve more difficult, real-world problems.


Chen gives you a jumpstart on using Pandas with a realistic dataset and covers combining datasets, handling missing data, and structuring datasets for easier analysis and visualization. He demonstrates powerful data cleaning techniques, from basic string manipulation to applying functions simultaneously across dataframes.


Once your data is ready, Chen guides you through fitting models for prediction, clustering, inference, and exploration. He provides tips on performance and scalability, and introduces you to the wider Python data analysis ecosystem. 

  • Work with DataFrames and Series, and import or export data
  • Create plots with matplotlib, seaborn, and pandas
  • Combine datasets and handle missing data
  • Reshape, tidy, and clean datasets so they’re easier to work with
  • Convert data types and manipulate text strings
  • Apply functions to scale data manipulations
  • Aggregate, transform, and filter large datasets with groupby
  • Leverage Pandas’ advanced date and time capabilities
  • Fit linear models using statsmodels and scikit-learn libraries
  • Use generalized linear modeling to fit models with different response variables
  • Compare multiple models to select the “best”
  • Regularize to overcome overfitting and improve performance
  • Use clustering in unsupervised machine learning

Register your product at for convenient access to downloads, updates, and/or corrections as they become available.

About the Author

Daniel Chen is a graduate student in the interdisciplinary PhD program in Genetics, Bioinformatics & Computational Biology (GBCB) at Virginia Tech. He is involved with Software Carpentry as an instructor and lesson maintainer. He completed his master’s degree in public health at Columbia University Mailman School of Public Health in Epidemiology, and currently works at the Social and Decision Analytics Laboratory under the Biocomplexity Institute of Virginia Tech where he is working with data to inform policy decision-making. He is the author of Pandas for Everyone and Pandas Data Analysis with Python Fundamentals LiveLessons.

Read more




Related posts

Beginning Data Science with R by Manas A. Pathak, PDF 3319120654
The Drivers of Digital Transformation: Why There’s No Way Around the Cloud (Management for Professionals) by Ferri Abolhassan, PDF 3319318233
Agile Management: Leadership in an Agile Environment by Ángel Medinilla, PDF 3642437583
CHI 16 Vol 1: CHI Conference on Human Factors in Computing Systems by CHI Conference Committee, PDF 145034626X
Enhancing Contextual Data Storage in the Clouds: Software as a Service (SaaS) by Sudeep K. Hase, PDF 3659782440
iOS 10 by Tutorials: Learning the new iOS APIs with Swift 3 by Team, PDF

Leave a Reply

Your email address will not be published. Required fields are marked *